

Masters Thesis: MEE06:09

MP3 DECODER in Theory and Practice

Praveen Sripada

Masters Thesis Report

Blekinge Tekniska Högskola
March 2006

Supervisors: Josef Ström Bartunek

 Jörgen Nordberg

Department of Signal Processing and Telecommunications
Blekinge Institute of Technology
Box 520, SE – 372 25
Ronneby
Sweden

 Abstract

MPEG audio coding under the name MP3 has become one of the most
popular standards for digital audio broadcasting and videos. High
compression ratios offered by MP3 codecs in various stand alone
players and hand held devices over the last few years has increased its
popularity immensely. Internet users, music lovers who would like to
download highly compressed digital audio files at near CD quality are
the most benefited. Psychoacoustic model, Modified Discrete Cosine
Transform (MDCT) and Huffman coding play a vital role in achieving
such magnificent compression ratios. In this thesis, a thorough
knowledge of MP3 decoder is obtained by going through the ISO
standard and then some of the decoder blocks have been implemented
for deeper understanding.

- 5 -

CONTENTS

1 Introduction .. - 9 -

1.1 How does MP3 work? .. - 9 -

1.2 MPEG Audio Compression.. - 9 -

2 Overview of audio compression formats.. - 11 -

3 Inside an MP3 file... - 13 -

4 Overview of MP3 Encoder ... 15

4.1 Filter bank and Psychoacoustic model .. 15

4.2 Quantisation .. 16

4.3 Huffman coding... 16

4.4 Bitstream formatting ... 16

5 MP3 Decoder ... 17

5.1 Audio Frame Header ... 19
5.1.1 Frame Header in detail...19
5.1.2 Frame Length Calculation..23

5.2 Decoding Side information ... 24

5.3 Main data... 30

5.4 Decoding Scalefactors... 31

5.5 Decoding Huffman data .. 31

5.6 Requantizing spectrum.. 32

5.7 Reordering spectrum ... 33

5.8 Stereo processing... 33
5.8.1 Mid/Side stereo ...33
5.8.2 Intensity stereo..34

5.9 Alias reduction .. 34

5.10 Inverse Modified Discrete Cosine Transform and Overlapping 35

5.11 Frequency inversion .. 35

5.12 Synthesis via polyphase filter bank... 36

- 6 -

6 Implementation.. 37

6.1 Header information for frame 1 .. 37

6.2 Side information details for frame 2 ... 37

6.3 Problems encountered during implementation.................................... 38

7 Conclusions .. 41

8 References ... - 43 -

- 7 -

Abbreviations

AC 3 – Advanced Codec 3
CCITT – Consulative Committee for International Telephone and Telegraph
CD – Compact Disc
CRC – Cylic Redundancy Code
DVD – Digital Versatile Disc
FFT – Fast Fourier Transform
GSM – Global System for Mobile communications
IEC – International Electrotechnical Commission
IMDCT – Inverse Modified Discrete Cosine Transform
ISO – International Organization for Standardization
ITU – International Telecommunications Union
kHz – KiloHertz
kbps – Kilo Bits Per Second
MDCT – Modified Discrete Cosine Transform
MPEG – Motion Picture Experts Group
MP3 – MPEG 1 Layer III
MS – Mid Side stereo
PCM – Pulse Code Modulation
SMR – Signal to Masking Ratio
WMA – Windows Media Audio

- 8 -

- 9 -

1 Introduction

MP3 has changed the way people listen to music on the Internet. It was not
so long ago that the average pop song converted into a Wav file took hours
to download on a 28.8 kbps modem connection and ate up around 50
megabytes of disc space. With the same song converted into an MP3 file,
download time gets reduced dramatically to around one-tenth the original
size while sounding just as good as before.

1.1 How does MP3 work?

As a form of compression, MP3 is based on a psycho-acoustic model [1],
which recognizes that the human ear cannot hear all the audio frequencies in
a recording. The human hearing range is between 20 Hz to 20 kHz and it is
most sensitive between 2 to 4 kHz. When sound is compressed into an MP3
format, an attempt is made to get rid of the frequencies that cannot be heard.
As such, this is known as 'destructive' compression. After compression, the
information that is eliminated from the audio signal cannot be replaced [8].

When encoding data into MP3 format, a variety of compression levels can
be set. For instance, an MP3 file created with 128 kbit compression will be
of a greater quality and larger file size than that of a 56 kbit compression.
The greater the compression ratio, the lesser is the sound quality.

Layers in MP3: The complexity of MP3 codec increases while moving
from Layer 1 to Layer3.

Layer 1 possesses the lowest complexity and is specifically targeted to
applications where the complexity of the encoder plays an important role.

Layer 2 requires a more complex encoder as well as a slightly more complex
decoder. Compared to Layer 1, Layer 2 is able to suppress more redundancy
in the signal and applies the psychoacoustic model in more efficient way.

Layer 3 is once again of an increased complexity and is targeted to
applications needing the lowest data rates, by its suppression of the
redundant signal and its improved extraction of feebly audible frequencies
using its filter [11].

1.2 MPEG Audio Compression

MPEG is a lossy compression, which means, some audio information is
certainly lost using these compression methods. This loss can hardly be
noticed because the compression method tries to control it. By using several
complicated and demanding mathematical algorithms it will only lose those
components of sound that are hard to be heard even in the original form
[10].

- 10 -

This leaves more space for information that is important. This way it is
possible to compress audio up to 12 times which is really significant. Due to
its quality MPEG audio became very popular [10].

MPEG-1 audio (described in ISO/IEC 11172-3) [1] describes three layers of
audio coding with the following properties:

- One or two audio channels.
- Sample rate 32 kHz, 44.1 kHz or 48 kHz.
- Bit rates from 32 kbps to 448 kbps.

- 11 -

2 Overview of audio compression formats

MPEG: MPEG (from the Motion Picture Experts Group) is the
international standard for multimedia. It incorporates both audio and video
encoding at a range of data rates. MPEG audio and video are the standard
formats used in Video CDs and DVDs. The lowest data rate supported for
MPEG-1 mono audio is 32 kbps. Sample rates of 32 kHz, 44 kHz (audio
CD) and 48 kHz (Digital Audio Tape) are supported.

Dolby Digital: Dolby digital created by Dolby labs is used as audio format
for movie theatres and DVD’s. Dolby Digital is based on "AC-3", a
perceptual coding scheme, and can support a wide range of audio stream
from a single mono channel to "5.1" surround sound. 5.1 surround sound
includes left, center, and right front channels; left and right rear surround
channels; and a bass boost channel. Dolby Digital tends to be a specification
for high-end applications, while MP3 is better suited to low-end
applications.

Mu-Law: mu-law is the international standard telephony encoding format,
also known as ITU (formerly CCITT) standard G.711. It packs each 16-bit
sample into 8 bits by using a logarithmic table to encode with a 13-bit
dynamic range and dropping the least significant 3 bits of precision.
Encoding and decoding is very fast and support is universal.

Real Audio: RealAudio is a proprietary encoding format created by
Progressive Networks. It was the first compression format to support live
audio over the Internet and thus gained considerable support. Later versions
could support higher sampling rates ranging from 11 kHz to 44 kHz.

GSM 06.10: GSM 06.10 is the international standard digital mobile
telephony encoding format. It uses linear predictive coding to substantially
compress the data by predicting the likely shape of the sound wave and
recording the differences between the actual sound and the prediction.
Compression and decompression are slow and the quality is not great, but
the algorithm is freely available resulting in widespread use in various
products.

WMA: Windows Media Audio, developed by Microsoft, has been pushing
their own audio compression format as an alternative to MP3. Even though
it is said that it has good compression quality, but the predominance of
Microsoft ensured that WMA is a popular format and is supported by almost
all digital music players.

OggSquish: One of the most interesting compression algorithms is being
implemented by the "Xiph.org Foundation". It is a group named "Ogg" to
create public-domain, non-proprietary, free and open compression and
multimedia specifications. They have created an audio compression scheme

- 12 -

known as ‘Vorbis’. It will provide a range of compression factors from 5:1
up to 18:1 plus a "lossless" compression mode. It is optimized for very high
sound quality (source material at 30-48 kHz sample rates).

- 13 -

3 Inside an MP3 file

The bit stream inside an MP3 file (see Figure 1) contains frames with the
following parts [1].
- Header
- Side information
- Main data
- Ancillary data

 Header Side information Main data Ancillary

data

 Figure 1: Organisation of bit stream in MPEG 1 Layer III

Header is always 32 bits or 4 bytes and the information in the header
confirms the authenticity of an MP3 file. Location of each header does not
always need to be at the beginning of the frame. Therefore each header
starts with a syncword to mark its position in an MP3 file.

Side information can either be 17 bytes if it is a single channel or 32 bytes if
it is a dual channel. Side information always immediately follows the
header. Basically, it contains all the relevant information to decode the main
data. For example it contains the main data begin pointer, scale factor
selection information, Huffman table information for both the granules etc.

Main data need not always follows the side information. It can be divided in
such a way that a part of the main data can be located in the current frame
and the other part can be found in the previous frame. Details on how the
main data is organised can be known only after extracting the side
information. It is always advised to look at least three frames at a time to get
some clear understanding of the bitstream.

Ancillary data can be defined by the user and the exact number of bits is not
explicitly mentioned. It starts after the Huffman coded bits. The distance
between the end of the Huffman coded bits and the location in the bitstream,
where the next frame’s main data begin pointer points to, is the number of
ancillary bits [1].

14

15

4 Overview of MP3 Encoder

Block diagram (see Figure 2) of an MP3 Encoder along with a brief
description of it is given below.

 Figure 2: Block diagram of MPEG-1 Layer 3 Encoder (Source [4])

4.1 Filter bank and Psychoacoustic model

There are two filter banks in a MPEG audio algorithm, namely filterbank
and a hybrid polyphase / MDCT filterbank (see Figure 2). The input PCM
samples are simultaneously fed into a filterbank and a psychoacoustic
model. Filter bank splits the signal into 32 equal subbands in frequency
domain where as psychoacoustic model takes the signal spectrum as input
and determines the ratio of signal energy to masking threshold for each sub-
band. To obtain better frequency resolution the 32 subbands are further
divided into 576 frequency lines by the MDCT. MDCT used is 12 point
(short) or 36 point (long) with 50 % overlap and the type of MDCT (long or
short point) is determined by the window switching algorithm [6]. The
output of the psychoacoustic model consists of masking threshold values or
allowed noise for each coder partition. In Layer-3, these coder partitions are
roughly equivalent to the critical bands of human hearing. If the
quantization noise can be kept below the masking threshold for each coder
partition, then the compression result should be indistinguishable from the
original signal.

16

4.2 Quantisation

The signal energy to masking ratio (SMR) which is calculated by the
psychoacoustic model is used by the quantizer to determine the number of
code bits that should be allocated for the quantization of subband
coefficients. Quantization is done via a power-law quantizer [3].

4.3 Huffman coding

The quantized values are coded by Huffman coding. To get even better
adaptation to signal statistics, different Huffman code tables can be selected
for different parts of the spectrum. Huffman coding is basically a variable
code length method and noise shaping has to be done to keep the
quantization noise below the masking threshold. So a global gain value
(determining the quantization step size) and scalefactors (determining noise
shaping factors for each scalefactor band) are applied before actual
quantization [3]. The process to find the optimum gain and scalefactors for a
given block, bit-rate and output from the perceptual model is usually done
by two nested iteration loops namely the rate control loop and the noise or
distortion control loop.

The order of the Huffman encoded data depends on the block type of the
granule. If the block type is 0, 1, or 3 the Huffman encoded data is ordered
in terms of increasing frequency. If the block type is 2, then the Huffman
encoded data is ordered in the same order as the scalefactor values for that
granule.

4.4 Bitstream formatting

Finally the Huffman coded values are formed into a bitstream. A bitstream
formatter is used to assemble the bitstream. The encoded bitstream consists
of quantized and coded spectral coefficients along with some side
information like bit allocation information, quantiser step size information
etc.

17

5 MP3 Decoder

Decoding of MP3 audio is carefully defined in the ISO standard [1]. Each
frame is made up of 1152 samples and there is always a header attached to
each of the frames associated in the MP3 file. Content in the header and side
information for a particular frame is necessary so that decoding is done
correctly.

The first and foremost thing in the decoding procedure is the
synchronisation of the decoder to the incoming bitstream. Synchronisation
is the process of finding the position of the first header and the subsequent
ones. Once this is done, the organisation of the encoded data is completely
known and the decoding procedure can be performed smoothly. The block
diagram in Figure 3 and flow chart in Figure 4 gives an idea on the
procedure.

 Figure 3: Basic sketch of a decoder

Frame unpacking constitutes finding the bitstream header, decoding side
information, decoding scale factors and decoding the Huffman data.
Reconstruction block constitutes requantizing and reordering the spectrum.
Inverse mapping constitutes joint stereo processing if applicable, alias
reduction, synthesis via IMDCT and polyphase filter bank, and out comes
the PCM samples.

 Reconstruction
 or
 Inverse
 Quantization

Frame unpacking
 or
 Decoding
 bitstream

Inverse mapping
 or
Synthesis filter
bank

 Input
bitstream

Output
PCM
samples

18

 Figure 4: Block diagram of MPEG 1 Layer III decoder

 DECODE SIDE INFORMATION

 GET BIT STREAM, FIND HEADER

 ALIAS REDUCTION

 DECODE HUFFMAN DATA

 REQUANTIZE SPECTRUM

 JOINT STEREO PROCESSING
 (If applicable)

 REORDER SPECTRUM
IF (window switching flag && block type
=2)

 DECODE SCALE FACTORS

 SYNTHESIZE VIA IMDCT
 & OVERLAP- ADD METHOD

(IMDCT either18 or 6, 6, 6 depending on
window switching flag and block type)

 SYNTHESIZE VIA POLYPHASE
 FILTER BANK

 OUTPUT PCM SAMPLES

 END

 BEGIN

19

5.1 Audio Frame Header

An MPEG audio file is built up from smaller parts called frames. Generally,
frames are independent items i.e. any part of the file can be cut and played
correctly. For Layer III, this is not totally true. Due to internal data
organization in MPEG version 1 Layer III files, frames are often dependent
on each other [12].

When information about an MPEG file has to be read, it is usually enough
to find the first frame, read its information and assume that all the frames
would be following the same pattern [12].

But MP3 supports variable bitrate, which means bitrate changes according
to the content of each frame. This way lower bitrates may be used in frames
where it will not reduce sound quality. Thus it allows better compression
rates while keeping high quality of sound.

5.1.1 Frame Header in detail

The frame header consists of four bytes or 32 bits and the proper way to
read the header is given in Table 1. The first 12 bits of the frame header are
always set to one and are called ‘frame sync’. The remaining bits contain
information about the MPEG version, bit rate, sampling rate etc. Remember,
this is not enough, frame sync can be easily (and very frequently) found in
any binary file. Also it is likely that MP3 file contains lot of additional
information on its beginning which also may contain false sync. Thus, two
or more frames in a row have to be checked to assure that it really is an MP3
file.

Frames may have a CRC check. The CRC is 16 bits long and, if it exists, it
follows the frame header. After the CRC comes the audio data [12]. The
length of the frame may be calculated to read other headers. It can also be
used to calculate the CRC of the frame and can be compared with the audio
file under consideration. This is actually a very good method to check the
MPEG header validity.

20

 Figure 5: Terms contained in the header (Source [9], [13])

From Figure 5, those details represented above the audio data constitute the
header part of an MP3 file. When Figure 5 is observed closely, the header
part is divided into 32 small blocks which is analogous to the 32 bits in the
header. So each block represents a bit and the description of the terms is
given in Table 1.

21

Position of
bits in the
header

 Number of bits

 Definition Example

1 to12 12 Sync word : Frame sync which
should always be set

‘1111 1111 1111
1111’

13 1 ID: Denotes the MPEG version
1 or 2

 ‘1’

14 to15

2

Layer: Denotes which layer is
used.

‘01’ - Layer III
‘10’ - Layer II
‘11’ - Layer I
‘00’ - Reserved

16 1 Protection bit: Indicates if the

bitstream is protected by CRC
following the header

‘0’- Protected
‘1’- Unprotected

17 to 20 4 Bitrate: Different bitrates can
be used while encoding

‘1001’ – 128 kbps

21 to 22 2 Frequency : MP3 supports 32,
44.1, 48 kHz frequencies

‘00’- 44.1 kHz

23 1 Padding bit: If set, then the data
is padded with one extra slot.

‘0’- Not set
‘1’- Set

24 1 Private bit: Only informative ‘1’

25 to 26 2 Mode: Denotes either single,
dual, joint stereo or stereo
channels

‘11’- Single Channel

27 to 28 2 Mode extension: Used only in
joint stereo mode

‘00’- M/S and
Intensity stereo are
off

29 1 Copyright: Indicates if the
bitstream is copyrighted or not

‘0’-No copyright
‘1’- Copyrighted

30 1 Copy: Indicates if bitstream is a
copy or original

‘0’- Copy
‘1’- Original

31 to 32 2 Emphasis: Indicates the type of
emphasis used

‘00’- No emphasis

 Table 1: Organisation of bits in the header of an MP3 file

22

Bitrate: Bitrates ranging from 32 to 328 kbps are supported in MP3.
Layer III supports variable bit rate by switching the bitrate index between
the frames. Table 2 gives the bit rates for MPEG versions 1, 2 and 2.5.

MPEG 1 MPEG 2, 2.5 (LSF) Bitrate
Index Layer I Layer II Layer III Layer I Layer II & III
0000 Free Free Free Free Free
0001 32 32 32 32 8
0010 64 48 40 48 16
0011 96 56 48 56 24
0100 128 64 56 64 32
0101 160 80 64 80 40
0110 192 96 80 96 48
0111 224 112 96 112 56
1000 256 128 112 128 64
1001 288 160 128 144 80
1010 320 192 160 160 96
1011 352 224 192 176 112
1100 384 256 224 192 128
1101 416 320 256 224 144
1110 448 384 320 256 160
1111 Reserved Reserved Reserved Reserved Reserved

 Table 2: Bitrates (Source [12])

Sampling frequency: Table 3 indicates the sampling frequency according to
the ISO specifications. From Table 3, it can be seen that the sampling
frequencies are getting halved in the next versions of MPEG which means
that it can support wider range of applications.

 Table 3: Sampling frequency for MPEG versions 1, 2 and 2.5

Mode: Four types of modes are supported by MP3. Mode indicates the
various types of modes used according to Table 4.

Sampling Rate
Index MPEG 1 MPEG 2 (LSF) MPEG 2.5 (LSF)

00 44100 Hz 22050 Hz 11025 Hz
01 48000 Hz 24000 Hz 12000 Hz
10 32000 Hz 16000 Hz 8000 Hz
11 Reserved Reserved Reserved

23

Bit value Type of mode

00 Stereo

11 Joint Stereo

10 Dual Channel

01 Single Channel

 Table 4: Bit values and mode type

Mode extension: If joint stereo coding is applied in the bitstream then it is
important to know if the intensity stereo and mid side (MS) stereo are on or
off. It can be known from Table 5.

 Table 5: Bit values and mode extension

5.1.2 Frame Length Calculation

There are two terms that most people are confused with an MP3 file. They
are the frame size and the frame length. Frame size is the number of
samples contained in a frame. It is constant and is always 384 samples for
Layer I and 1152 samples for Layer II and Layer III.

Frame length is the length of a frame when compressed. It is calculated in
slots. One slot is 4 bytes long for Layer I, and one byte long for Layer II and
Layer III. When reading a MPEG audio file, length of each frame has to be
calculated to be able to find each consecutive frame. Remember, frame
length may change from frame to frame due to padding or bitrate switching.

For Layer II & III files, frame length is calculated by formula 1.

 Padding
Samplerate

BitrateFLB +∗= 144 (1)

where FLB is the frame length in bytes.

Bit value Intensity stereo MS stereo

00 Off On

01 On Off

10 Off On

11 On On

24

If the padding bit is set, then the frame contains an additional slot to adjust
the mean bitrate to the sampling frequency. Padding is necessary when the
sampling frequency is 44.1 kHz and the frame length should always be an
integer.

Example:

byteslengthFrame 4181
1.44

128144 =+∗=

.

5.2 Decoding Side information

As stated earlier, the side information is 17 bytes in length for a single
channel encoded file and 32 bytes for dual channel mode. Information in
side information allows decoding the main data correctly. Basic structure of
side information is given in Figure 6.

main_data_begin Private_bits scfsi side_info
for gr.1

side_info
for gr.2

 Figure 6: View of side information

Table 6 gives a clear picture of how the side information is organised both
for single and dual channel modes. Organisation of side information for
block type 2 is presented in Table 7. Lengths of each term mentioned in the
tables are indicated in bits and terms involved in the tables 6 and 7 are
explained following the tables.

25

Table 6: Organisation of side information for block types 0, 1 and 3(Source [2])

 Name Single channel Dual channel

main_data_begin

private_bits

share

9

5

4

9

3

4 + 4
Information for first granule:

part2_3_length

big_values

global_gain

 scalefac_compress

window_switching

12

9

8

4

1

12 + 12

9 + 9

8 + 8

4 + 4

1 + 1
For normal blocks:

table_select

 region0_count

 region1_count

3*5

4

3

3*5 + 3*5

4 + 4

3 + 3
Subtotal for normal blocks 22 44

preflag

scalefac_scale

count1table_select

1

1

1

2

2

2
Subtotal for first granule 59 118

Subtotal for second granule 59 118

Total number of bits 136 256

Total number of bytes 17 32

26

Name Single channel Dual channel

For start, stop and
short blocks:
block_type

mixed_block_flag

Table selection for
two regions

subblock_gain

2

1

2*5

2*5

2 + 2

1 + 1

2*5 + 2*5

3*3 + 3*3

Subtotal for not
normal blocks

 22 44

 Table 7: Organisation of side information for block type 2

 main_data_begin

It is a pointer that points to the beginning of the main data. The variable has
nine bits and specifies the location of the main data as a negative offset
(jumping backwards) in bytes from the first byte of the audio sync word.
The number of bytes of the header and side information are not taken into
account while calculating the location of the main data. This is called bit
reservoir technique and it allows the encoder to use some extra bits while
encoding a difficult frame. Since it is nine bits long, it can point upto

511129 =− bytes in front of the header. If the value of main_data_begin is
zero, then the main data follows immediately the side information.

private_bits

These bits are for private use and will not be used by ISO in the future. But
one may wonder as to why to waste three to five precious bits, while
fighting for every single bit in other places. The reason is, these private bits
round up the size of side information to a sequence of full bytes and
equalize it, making a fixed size (which being 17 for single and 32 for dual
channels) as required [2].

scsfi

Layer III contains two granules and the encoder can specify separately for
each group of scale factor bands whether the second granule will reuse the
scale factor information of the first granule or not. If the value of scfsi is
one, then sharing of scale factors is allowed between the granules.

27

scfsi_band

Layer III there has one scale factor for each frequency band and the 21
frequency bands are separated into 4 groups according to Table 8. If block
type is 2 then scale factors are transmitted for each granule and channel.

 Table 8: Scalefactor bands

part2_3_length

This value contains the number of main_data bits used for scale factors and
Huffman coded data. The main data is divided into two or four parts, for
each granule and channel, depending on single or dual channel respectively.
The size of each of these sections is the first item in the side information
which is 12 bit unsigned integer.

big_values

The total frequency spectrum from zero to Nyquist frequency is divided into
several regions depending on the maximum quantized values. It is broadly
classified into three regions namely big values, count1 and rzero, which is
shown in Figure 7. Once they are classified they are coded with different
Huffman code tables.

Rzero: It is assumed that higher frequency values are expected to possess
lower amplitudes and need not be coded. So starting from higher
frequencies pairs of quantized values equal to zero are counted and are
termed as ‘rzero’ [1].

Count1: These are quadruples of quantized values which has only three
quantized values containing -1, 0 and 1.

Big values: The first part of the frequency spectrum contains the big values.
Big values are the number of pairs of quantized values, in the region of the
spectrum which extend down to zero. The maximum absolute value in this
range is 8191.

 Group Scalefactor band
0 0 - 5

1 6 – 10

2 11 - 15

3 16 - 20

28

 | | | |

 1…………..bigvalues*2…………..bigvalues*2+count1*4………576

 Figure 7: Frequency spectrum division

global_gain

The quantizer step size information is known through this variable and the
formula for requantization is given in the requantization block.

scalefac_compress

Determines the number of bits used for the transmission of the scalefactors.
The number of bits that has to be transferred to scale factor bands is defined
by two variables called ‘slen1’ and ‘slen2’. Depending on the block type,
the transmission of slen1 and slen2 for the scalefactor bands vary and is
presented in Table 9.

 Table 9: scalefac_compress

If the block type is 0,1or 3 then - slen1 is transferred for the scalefactor
bands 0 to 10 and and slen2 for the bands 11 to 20.

If the block type is 2 and mixed block flag is 0 then - slen1 is transferred for
the scalefactor bands 0 to 5 and and slen2 for the bands 6 to 11.

Big values Count1 Rzero

 scalefac_compress slen1 slen2
0 0 0
1 0 1
2 0 2
3 0 3
4 3 0
5 1 1
6 1 2
7 1 3
8 2 1
9 2 2
10 2 3
11 3 1
12 3 2
13 3 3
14 4 2
15 4 3

29

If the block type is 2 and mixed block flag is 1 then - slen1 is transferred for
the scalefactor bands 0 to 7 (long window scale factor band) and 3 to 5 (for
short window scale factor band). Slen2 is transferred for the bands 6 to11.

window_switching_flag

Indicates that other than normal window is used. If window_swtiching_flag
is set then variables block_type, mixed_block_flag, subblock_gain are also
set. If window_swtiching_flag is not set then the value of block_type is
zero.

block_type

Indicates which type of window to be used for each granule. The different
types of windows along with block type are provided in Table 10.

 block_type window type
0 reserved
1 start block
2 3 short windows
3 end

 Table 10: Block type and window type

mixed_block_flag

Indicates that different frequencies are transformed with different window
types. If mixed_block_flag is not set then all the frequency lines are
transformed as specified by block_type. If it is not set, then the two lowest
polyphase subbands are transformed with normal window and the remaining
30 subbands as block_type.

table_select

As the name states, different Huffman coded tables are selected depending
on the maximum quantized value and local statistics of the signal. There are
32 different Huffman tables given in the ISO standard. The table_select
specifies the Huffman table to decode only the big_values.

subblock_gain

This variable is used only when window_switching_flag is set and for short
windows (i.e, block_type=2). It indicates the gain offset from the global

gain for one subblock and the values of the subblock have to be divided
by []()windowgainsubblock _4 .

30

region0_count and region1_count

Big_values that were mentioned earlier is further subdivided into three
regions namely, region0, region1 and region2. This partition of the spectrum
is used to enhance the performance of Huffman coder while also attaining
better error robustness and better coding efficiency. The values
region0_count and region1_count are used to indicate the boundaries of the
regions. The region boundaries are aligned with the partitioning of the
spectrum into scale factor bands. Region0_count and region1_count
contains one less than the number of scalefactor bands in the regions 0 and 1
respectively [1].

preflag

This field is never used for short blocks (i.e, block_type = 2). If it is set,
then the values of the Table 11 are added to the scale factors. This is
equivalent to multiplication of the requantized scalefactors with the
Table 11 values which also means additional high frequency amplification
of the quantized values.

scalefac_scale 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 pretab 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 3 3 3 2

 Table 11: Preflag table only for block_type 2 windows

scalefac_scale

The scalefactors are logarithimically quantized with a step size of 2 or 2
depending on the value of scalefac_scale. In the requantization equation of
each step size the scalefac_scale is multiplied by a factor 0.5 if the value of
scalefac_scale is 0, else multiplied by 1 if the value of scalefac_scale is 1.

count1table_select

This variable selects which of the two possible Huffman tables will be used
for quadruples of quantized values with magnitude not exceeding 1.

5.3 Main data

The main data in the bitstream is split into two granules. Each granule
contains scalefactors, Huffman coded data and ancillary information which

has to be read. The start of the main data, whether it immediately follows
the side information or its location as negative offset, is known from the
main_data_begin pointer. The decoder has to skip the header (4 bytes) and

31

side information (17 or 32 bytes) while decoding the main data. Main data is
allocated in such a way that all main data is resident in the input buffer
when the header of the next frame is arriving in the input buffer.
Organisation of main data in granules is shown in Figure 8.

 Scale factors Huffman coded data Ancillary information

 Figure 8: Organisation of main data in granules

5.4 Decoding Scalefactors

For each granule the bitstream contains first the scalefactors and then the
Huffman coded raw samples. Sharing of scalefactors has to be checked
before reading the scalefactors. They are definitely not shared in the first
granule of a frame. If sharing of scalefactors is allowed, then the
scalefactors of the first granule are used for the second granule as well and
they will not be transmitted for the second granule. Further, a short block in
either the first or the second granule prevents sharing.

From the bitstream only the scale factor indices are found but not the
scalefactors. The index along with the maximum scalefactor index is stored
into two arrays. Most of it is reused for the second granule. Reading of scale
factor indices are done according to slen1 and slen2, which themselves are
decoded from the values of scalefac_compress.

The number of bits used to encode the scalefactors is called part2_length
and is calculated by the formulas 2, 3 and 4 depending on the window types
used in the granules.

If block_type = 0, 1, 3, then

 part2_length = 11*slen1 + 10*slen2. (2)

If block_type= 2 and mixed_block_flag=0, then

 part2_length = 18*slen1 + 18*slen2. (3)

If block_type= 2 and mixed_block_flag=1, then

 part2_length = 17*slen1 + 18*slen2. (4)

5.5 Decoding Huffman data

First, the frequency lines of the three regions in the big values are decoded
and then the small values. Decoding is done by using the tables specified in

32

the standard and details on which table to choose is given by the value
table_select in the side information. Once the big values are decoded, the
remaining Huffman coded bits are decoded by the value count1table_select.
Decoding is done until all Huffman code bits have been decoded or until
quantized values representing 576 frequency lines have been decoded,
whichever comes first. If there are more Huffman code bits than necessary
to decode 576 values they are regarded as stuffing bits and discarded. When
there are less than 576 frequency lines, Huffman code has to initiate a zero
padding to compensate the lack of data.

5.6 Requantizing spectrum

Quantization is the process of converting a real number (of almost) infinite
precision, taken from an infinite and continuous set of possible values, into
an integer number [2]. This is done during the encoding process. In the
decoding process the quantization process is reversed to obtain the
frequency lines. The raw integer sample values for all 576 frequency lines
that are obtained after Huffman decoding are first requantized and scaled.
Requantization is done separately for both short and long blocks by using a
power law and is given in formulas 5 and 6. Scaling which follows
requantization, is done by multiplying the values by the corresponding
scalefactors and are stored as scaled frequencies.

The Huffman decoded value at buffer index i is called is[i] and the input to
synthesis filter bank at index i is called xr[i].

For short blocks,

 [] [] [] BA 22 |iis|)iissign(ixr 3
4

∗∗∗= . (5)

The terms A and B are defined according to 5.1 and 5.2 respectively.

[] [][]grwindowgainsubblockgrgainglobalA _8210_(
4
1

∗−−∗=) (5.1)

[][][][]windowsfbchgrsscalefacmultiplierscalefacB __(∗−= . (5.2)

For long blocks,

33

 [] [] [] DC 22 |iis|)iissign(ixr 3
4

∗∗∗= . (6)

The terms C and D are defined according to 6.1 and 6.2 respectively.

 [])210_(
4
1

−∗= grgainglobalC (6.1)

[][][][]
[] [])

((
sfbpretabgrpreflag

windowgrchsfblscalefacmultiplierscalefacD
∗+

∗−=
 (6.2)

If the block type is 0,1,or 3 then the formula of long blocks is used.If the
block type is 2 then the formula of short blocks is used. When the difference
between the present time frame and the previous time frame is very less then
long block/window is used. Alternatively if the subband signal shows
considerable difference between the time frames, then short block/ window
is used. Short windows consists of three short overlapped windows and will
improve the time resolution given by the MDCT [5].

5.7 Reordering spectrum

Reordering of spectrum is dependent on the block type used prior to the
IMDCT operation. If short window is used (block_type=2) then the
requantization block would produce frequency lines ordered first by
subband, then by window and at last by frequency. This ordering of
frequency lines for short windows is done in such a way so as to increase
the Huffman coding efficiency. If long windows are used, then the
frequency lines are ordered first by subband and then by frequency [5].

5.8 Stereo processing

The reconstructed values after requantization, are now processed for MS or
intensity stereo modes or both. Details on which mode to process is known
by the mode extension value of the header specification.

The two channels of typical stereo signal are not independent and joint
stereo tries to exploit the existing similarities. Joint stereo processing is
complicated because short blocks are handled differently than long blocks.
Also, granules can contain a mixture of long and short blocks and the bands
in the granule can be combined with different stereo modes. There are two
types of joint stereo namely Mid/Side (MS) stereo and Intensity stereo [2].

5.8.1 Mid/Side stereo

Mid/side stereo is only an option in Layer III, otherwise joint stereo is
always intensity stereo. In mid/side stereo mode, instead of transmitting the
left and right channel separately, the mid signal M(i) is derived by adding

34

the left and the right channel. The side signal S(i) is derived by subtracting
the right from the left channel. So in order to reconstruct the left and right
channel values we reverse the process and are given by the formulas 7 and
8.

[])()(
2

1)(iSiMiLchannelLeft +∗= . (7)

[])()(
2

1)(iSiMiRchannelRight −∗= . (8)

5.8.2 Intensity stereo

In intensity stereo mode, both channels share the same signal, only the
intensity in both the channels differ [2]. Sounds coming from the side reach
one ear of the listener faster than the other ear. Therefore the signal will be
louder in the ear towards the sound source than in the other ear. Intensity
stereo is more compact coding than normal stereo. It is done by specifying
the magnitude via the scale factors of the right channel and a stereo position
variable named is_pos(sb). This variable is transmitted instead of
scalefactors for the right channels.

5.9 Alias reduction

Aliasing reduction is done for long block types (ie, block_type!=2). The
antialias block reduces the aliasing that is introduced by the use of ideal
non-band pass filter. The frequency lines in the granule are arranged in the
increasing order with 0 being the index of lowest frequency line and 576
being the highest. Aliasing reduction is done by merging the frequency lines
using eight butterfly calculations for each subband [5]. The coefficients for
the butterfly calculations are calculated using the values from the Table 12
and substituting them in the formulas 9 and 10.

2))((1(
1)(

ic
ics

+
= . (9)

2))((1(
)()(

ic
icica

+
= . (10)

 i 0 1 2 3 4 5 6 7

C(i)

 -0.6 -0.535 -0.33 -0.185 -0.095 -
0.041

-
0.00142

-
0.0037

35

Table 12: Coefficients for alias reduction

5.10 Inverse Modified Discrete Cosine Transform
 (IMDCT) and Overlapping

The IMDCT in co-operation with the synthesis filter bank produces, time
samples x(i) from frequency lines X(k). ‘n’ is the number of windowed
samples and for short blocks ‘n’ is 12 and for long blocks ‘n’ is 36. The
IMDCT is calculated using the formula 11.

For i = 0 to n-1

))12)(
2

12(
2

cos()()(
1)2/(

0
+++= ∑

−

=

kni
n

kXix
n

k

π . (11)

For n = 36, the IMDCT takes 18 frequency lines as input and generates 36
polyphase filter sub-band samples. These samples are multiplied with a 36-
point window before they can be passed on to the next step in the decoding
process [7].

Windowing contains four different types of windows namely, normal, short,
start and stop. Information on what type to use is found in the side
information part of each frame.

Producing 36 samples from 18 frequency lines means that only 18 of the
samples are unique. Therefore IMDCT is said to use a 50% overlap [7]. The
36 values from the windowing operation are divided into two groups.The
first half of the block of 36 values is overlapped with the second half of the
previous block. The second half of the actual block is stored to be used in
the next block. Overlapping is carried out by interleaving (adding) values
from the lower group with corresponding values from the higher group from
the previous frame.

5.11 Frequency inversion

The output of overlap add consists of 18 time samples for each of 32
polyphase subbands. Before processing the time samples into synthesis
polyphase filter bank , every odd time sample of every odd subband should
be multiplied by -1 to compensate for frequency inversion.

36

5.12 Synthesis via polyphase filter bank

The final step in the decoding process is to synthesize the 18 time samples
for each of the 32 subbands in each granule, into 18 blocks of 32 PCM
samples.

37

6 Implementation

 The header and side information are the most important blocks to get the

details of an audio file. So they have been considered and were successfully
implemented in Matlab. The practical values obtained for header are given
under Header information for frame 1. Side information values are presented
under Side information details for frame 2 and in Table 13. The MP3 file
that has been taken for implementation is ‘fg_nufolk_snippet_mix.mp3’.

6.1 Header information for frame 1

From the Matlab program that is written the total bits present in the test file
under consideration could be extracted. The header starts at bit number
32769 and the total number of bits are 37055216. The total number of
headers that has been obtained is 11749.

As expected, the first 12 bits found in the header are
‘1111 1111 1111’ which means that it is the syncword. After finding the
syncword, remaining bits are examined according to the ISO specifications.
After examining the remaining bits, we could confirm that the test file is an
MP3 file.

Result: The audio file under test is found to be MP3 encoded in joint stereo
mode with 44.1 kHz sampling frequency which has a bitrate of 128kbps.

6.2 Side information details for frame 2

It is always advised to look at three frames before confirming whether the
file is MP3 encoded or not. So frame 2 has been considered for side
information details.

From the main_data_begin pointer it is found that, the main data for frame 2
starts at 198 bytes before the header and side information. For frame 1 the
main_data_begin pointer has the value zero, which means that the side
information follows immediately the header. So this confirms the fact that
the main data need not always follow the side information and the main data
can be placed in any of the previous frames using the bit reservoir
technique. Side information results for granule one and channel one that are
obtained after Matlab implementation are presented in Table 13. A graphical
representation of the results is presented in Figure 10.

38

 Figure 9: Side information values obtained after implementation

6.3 Problems encountered during implementation

Implementation was done in Matlab in the signal processing department at
BTH on a P4, 1.5 GHz, 512 MB RAM, Dell machine. The header and side
information results obtained show that they exactly match the standard,
which means that implementation has been successful.

During the implementation, the following are the problems encountered.

1.They are some false sync words, which actually felt that it could be the
start of the sync word. Proper care should be taken to verify the authenticity
of the sync word. False sync words can be avoided by taking three or four
frames into consideration.

2. The computer reads the bits in little endian format where as big endian is
the general way of bit representation around the world. There are specific
commands in Matlab, which are to be considered during implementation, so
that the big endian way of representing the bits is computed.

 Variables Values obtained in bits

Part2_3_length 188

Big_values 90

Global_gain 90

Scalefac_compress 9

Window_switching_flag 1

Block_type 2

Mixed_block_flag 1

Table_select 25

Subblock_gain 4

Preflag 1

Scalefac_scale 1

Count1table 1

39

0

20

40

60

80

100

120

140

160

180

200

 Values obtained in bits

Part2_3_length

Big_values

Global_gain

Scalefac_comp
ress
Window_switch
ing_flag
Block_type

Mixed_block_fl
ag
Table_select

Subblock_gain

Preflag

Scalefac_scale

Count1table

 Figure 10: Graphical representation of side information values

40

41

7 Conclusions

An MP3 decoder has been thoroughly studied and some of the decoder
blocks have been successfully implemented in Matlab for deeper
understanding. As expected, implementation of a decoder has been found
difficult. The standard does not provide a clear picture of the decoder
implementation. Parts of the standard are unclear for which reference of
other existing works is a must.

Bearing in mind, that decoder only has to decode the bitstream that has been
encoded in some sort, it can be said that decoder is relatively easier to
implement than an encoder. With time and proper resources, it is advised to
implement an entire decoder and real time implementation of it would be
challenging.

Better compression ratios can be obtained by using good IMDCT algorithms
and transforms. This thesis basically provides good information for those
who are interested in either software of hardware implementation of an MP3
decoder.

42

- 43 -

8 References

[1] ISO / IEC 11172-3: Information technology – Coding of moving pictures
and associated audio for digital storage media at up to about 1.5 Mbit/s –
Part3: Audio, ISO/ IEC 1993.

[2] M. Ruckert, Understanding MP3, Vieweg, 2005, ISBN 3-528-05905-2.

[3] Bradenburg K. and Popp H., “An introduction to MPEG Layer-3”, EBU
Technical review, June 2000.

[4] Bradenburg K., “MP3 and AAC explained”, in Proc. of the AES 17th Int.
Conf. on high quality audio coding, 1999.

[5] Raissi R., “Theory behind MP3”, 5th October 2005,
<http://www.mp3-tech.org>.

[6] Mathew M., Bhat V.,Thomas S.M., Yim C., “Modified MP3 Encoder
using complex modified discrete cosine transform” , ICME 2003.

[7] Fältmann I, Hast M, Lundgren A, Malki S, Montnemery E, Rångevall A,
Sandvall J,Stamenkovic M., “A Hardware implementation of an MP3
decoder” , Digital IC project, LTH,Sweden , May 2003.

[8] Geoff Nicholson, “MP3 Explained: A Beginners guide” 18th January
2006, <http://www.hitsquad.com/smm/news/9903_109/?nl9905 >.

[9] S. Haker, MP3: The Definitive guide, O’Reilly, 2000, ISBN 1-56592-
661-7.

[10] Predrag Supurovic, “MPEG script”, 10th January 2006,
<http://www.dv.co.yu/mpgscript/mpeghdr.htm>.

[11] Gabriel Bouvigne, “MP3 Tech”, 5th October 2005,
<http://www.mp3-tech.org>.

[12] “MP3 converter”, 15th December 2005,
<http://www.mp3-converter.com>.

[13] “Id3 tags”, 28th December 2005, <http://www.id3.org>.

